
SINGLE PHASE ZVS PWM NPC INVERTER 
 

Eduardo Maldaun Barreto, Marcello Mezaroba, Dênis Silva Oliveira 
University of Santa Catarina State – UDESC 

ZIP CODE 89219-710, Joinville,SC - Brazil 

edubarreto@gmail.com, mezaroba@joinville.udesc.br, dns.oliv@gmail.com 

 

Abstract – This paper presents a zero-voltage, pulse 

width modulated, NPC inverter, with active voltage 

clamping using only two auxiliary switches. The structure 

is particularly simple and robust. It is very attractive for 

high-power applications, single or multiple phases, due to 

neutral point accessible at the NPC topology. Switching 

losses are reduced due to implementation of the simple 

active snubber circuit that provides zero-voltage-

switching conditions for all switches, which includes the 

snubber auxiliary ones. When applied to NPC, the soft 

commutation allows high frequency commutation even 

for high voltage input, which reduces output filter size 

and improve the pass-band frequency. Its main features 

are simple modulation strategy, robustness, low weight 

and volume, low harmonic distortion of the output 

current and high efficiency. The principle of operation 

for steady-state conditions, mathematical analysis, and 

experimental results from a 1.5kVA laboratory prototype 

are presented. 

 

Keywords – NPC, Active Clamping, Soft Commutation, 

Multilevel Inverter. 

I. INTRODUCTION 

With the objective of reducing the audible noise of the 

high power static inverters, increase the signal pass band, and 

also reduce the inverter size, by reducing the size of 

magnetic parts and filter elements, researchers are searching 

for solutions that could increase the switching frequency, 

without compromising efficiency and electromagnetic 

emissions.  

Passive and active techniques have been proposed to be 

used in inverters to minimize commutation losses. The active 

solutions have a controlled auxiliary switch to achieve soft 

commutation that increases the overall system complexity 

[1]. The conventional passive techniques, like RCD 

snubbers, have the disadvantage to cause unbalance in the 

voltages at the switches in the NPC topology, where the 

voltage at the switches close to load becomes significantly 

higher compared to the switches close to DC-Link voltage 

[2]. Others passive techniques are variations of the traditional 

RCD snubber, like the Undeland and the Mc Murry circuits 

[3]-[7], which were developed to minimize this unbalance 

effect. The Undeland disadvantage is the high power losses, 

which lead to studies to regenerate this wasted energy, like 

the one proposed by Sperb [8] and Bendien [9]. The active 

solutions are based on ARCPI (Auxiliary Resonant 

Commutated Pole Inverter) or RLDC (Resonant DC Link 

Converter), where capacitors, inductors and switches provide 

an instant DC link shift that allows the switches to be closed 

at zero volts (ZVS) [10]-[12]. But, when these techniques are 

applied to NPC inverter, the number of additional switches 

makes it unfeasible. 

The NPC static converter/ inverter is being widely used in 

medium voltage applications. That is because the amount of 

energy that needs to be processed is increasing. This 

converter is well suited for power distributions systems, 

motor drivers, active filters, and recently wind generation 

systems, when the input voltage could be higher compared to 

traditional two level inverters.  

The NPC architecture allows the reduction of the voltage 

applied on each transistor, which in turn reduce the amount 

of voltage variation during commutation. Because of that, the 

operating frequency could be increased, and the inverter size 

could be reduced. Also, the voltage divisions between these 

transistors are optimized, as well as the output voltage 

harmonic content, when working as inverter [10]-[11]. 

This paper presents the theory and implementation of the 

active snubber such as in [1] applied to a three level NPC 

inverter [12]-[15]. It is organized such as follow: section II 

explains the operation principle of a three level NPC inverter 

with the auxiliary switches to provide the ZVS commutation; 

section III presents the operation stages and waveforms in 

the switches; a mathematical analysis is described at section 

IV; a design example, experimental results and conclusion 

are presented in sections V, VI and VII. 

II. THREE LEVEL NPC ZVS PWM INVERTER 

The proposed converter is shown in Figure 1. Q1 and Q4 

are the main switches, responsible to apply the DC link 

voltage to load, Q2 and Q3 are the secondary switches, 

responsible to keep the null voltage at load, and QA and QB 

are the auxiliary switches. C1 to C4, CA and CB are the 

commutation capacitance. 
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Fig. 1.  Three level NPC ZVS PWM inverter. 



The snubber circuit is constituted by two auxiliary 

switches, QA and QB, the anti-parallel diodes DA and DB, two 

small inductors, LSA and LSB, and two capacitors CSA and CSB. 

The capacitors are used for voltage clamping, and also to 

store the reverse recovery energy from D5 and D6. The 

inductors LSA and LSB control the di/dt on the diodes during 

reverse recovery. The auxiliary switches control the ZVS for 

all switches, including themselves. They work with constant 

pulse width and constant frequency at any load and 

modulation condition. 

The linear modulation of the topology is not considerably 

affected by the auxiliary circuit because the voltage across 

the auxiliary capacitors vCSA and vCSB have small ripple and 

small amplitude when compared to DC link voltage. The 

modulation range is also maintained because the 

instantaneous output voltage (before the output filter) is the 

sum of the DC link voltage, and vCSA and vCSB. 

III. OPERATION STAGES 

To simplify the analysis, all components are assumed 

ideal; the circuit is operating in steady state condition and the 

reverse recovery characteristics of all diodes, except D5 and 

D6 are excluded. The output current is considered constant 

during switching period and in phase with the output voltage 

for a cycle period. The parameter E represents the DC link 

voltage, and vCSA and vCSB are the voltage across the 

clamping capacitors CSA and CSB. In the following 

paragraphs, the operation of the first half-cycle is described 

in details. For the second half cycle, negative, the stages are 

analogous, but using the switches Q3, Q4 and QB, and the 

passives CSB and LSB. The main operation stages are shown in 

Fig 2 and the main waveforms in Fig. 3.  

 

First stage (t0 – t1): During this interval, the switch Q2 is 

closed and the current pass through D5 and Q2, causing a null 

voltage across the load. At the same time, the auxiliary 

switch QA is closed applying vCSA voltage to LSA inductor. 

The current at this inductor increases according to (1). 

 t
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Second stage (t1 – t2): This stage starts when switch the 

QA is blocked. The current iLSA then charge the capacitor CA 

from zero to 
SAvCE 2  and discharge the capacitors C1 

from 
SAvCE 2  to zero. 

 

Third stage (t2 – t3): When the voltage across C1 reaches 

zero, the diode D1 is forward biased and the current iLSA pass 

through it. At this moment, the switch Q1 is commanded to 

turn-on. Because the voltage across the inductor LSA is 2E , 

the inductor has the current decreased quickly. This stage 

ends when iLSA invert its direction. 

  

Fourth stage (t3 – t4): The current flowing through D5 

decreases and the current flowing through Q1 increases. 

When current at Q1 and LSA reaches iOUT, the reverse recovery 

at D5 begins. The inductor LSA limits the dtdi / . This stage 

ends when D5 finishes its reverse recovery phase. 

Fifth stage (t4 – t5): When D5 finishes the reverse 

recovery, the remaining current at LSA inductor discharges CA 

capacitor from vCSA to zero and charges C5 capacitor from 

zero to
SAvCE 2 . This is also the moment when the load 

voltage changes from zero to 
SAvCE 2 . At the end of this 

voltage equalization, DA conducts and the next stage begins.  

 

Sixth stage (t5 – t6): The remaining current from LSA flows 

through DA and charges the capacitor CSA. The current iLSA 

decreases, according to equation 1. When iLSA becomes equal 

to iOUT, the current flowing through DA is zero and QA 

transistor conducts, which is the beginning of the next stage. 

 

Seventh stage (t6 – t7): When iLSA is less than iOUT, QA 

transistor conducts. The current iLSA continues to decrease at 

and the current flowing through QA increases. The next stage 

begins when iQA is equal to iOUT, and consequently iLSA is 

zero. 

 

Eighth stage (t7 – t8): The current iLSA reverses its polarity 

and the inductor is charged according to (1). The current at 

QA is the sum of iOUT and iLSA. This stage finish when switch 

Q1 opens. 

 

Ninth stage (t8 – t0): When Q1 opens, C1 is charged from 

zero to
SAvCE 2 , and C5 is discharged from 

SAvCE 2  to 

zero. This stage ends when all capacitors voltages are 

equalized. 

IV. MATHEMATICAL ANALYSIS OF THE CIRCUIT 

A. Modulation Factor  

 

The inverter output voltage is controlled by the 

modulation factor – ma – which is obtained through the 

relation between the peak value of the sinusoidal reference 

and the sawtooth waveform shown at Fig. 4 or the relation 

between the output voltage value, and half of the DC-link 

voltage, per (2). 
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According to Fig. 4 also, the following was defined for the 

duty cycle: For D > 0, the reference signal is greater than 

zero, the switch Q2 is closed and Q1 is being commanded. 

The instantaneous load voltage can be 0 or +E/2; For D < 0, 

the reference signal is lower than zero, the switch Q3 is 

closed and Q4 is being commanded. The instantaneous load 

voltage can be 0 or –E/2. The value range acceptable for D is 

-1 to 1, where -1 means 100% duty cycle and –E/2 applied to 

load, and 1 means 100% duty cycle and +E/2 applied to load. 

The output voltage for one switching period is: 
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From (3), it is obtained the duty cycle D: 
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Fig. 2  Operation stages. (a) First stage (t0 – t1); (b) Second stage (t1 – t2); (c) Third stage (t2 – t3); (d) Fourth stage (t3 – t4); (e) Fifth stage (t4 – 

t5); (f) Sixth stage (t5 – t6); (g) Seventh stage (t6 – t7); (h) Eighth stage (t7 – t8); (i) Ninth stage (t8 – t0).  
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Fig. 3.  Main waveforms, upper side of the NPC.  

The inverter output voltage for an output period is given 

by 

 tvtv OUTrmsOUT  sin2)(     (5) 

where f  2 , and f  is the inverter output frequency.  

The maximum output voltage is given by (6). 
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The root-mean-square (rms) output voltage is obtained 

from  
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The duty cycle can be obtained from (3), (4) and (7), i.e., 

 tsenmatD  )(    (8) 

B. Soft Commutation 

 

In order to guarantee the ZVS condition, the energy stored 

at inductor LSA must be sufficient to charge and discharge the 

intrinsic capacitances CA and C1, respectively, during second 

stage. Thus, by inspection, for each switching cycle, the 

following condition should be met: 
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Assuming that vCSA << E/2 them 
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This equation shows the minimum if current to ensure soft 

commutation for a given cycle.  

It’s necessary to understand also, the voltage vCSA 

behavior in order to determine the maximum voltage across 

the switches. The clamping voltage average current must be 

zero. Thus, 
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where TS is the switching period. 
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Fig. 4.  NPC Modulation strategy. 

Comparing to the switching period, the commutation time 

is very short. Then it could be simplified according to the 

following: 

 051  tt    (12) 
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From (12) and (13), (11) can be written as follows: 
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Solving the integral equation and considering iCSA = 0, the 

steady state vCSA is defined by 
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Considering that the load current is a sinusoidal function, 

in phase with the output voltage, it leads to: 
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where ma was defined in (2) and ZOUT is the load impedance 

From (8), (16) and (17), it’s obtained the capacitor voltage 

vCSA: 
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where irr is the diode D5 reverse recovery peak current, 

defined by: 
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where Qrr is diode reverse recovery charge. 

The if current expression can be obtained from CSA current 

behavior analysis: 
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Combining the equations (17), (18) and (20), it’s obtained 

the expression that represents the if current behavior. 
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By inspection, it could be observed that the critical condition 

will happen when 2 t . At this condition, (21) can be 

simplified to 
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and them, according to (10) and (22), the soft commutation is 

guaranteed if  
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V. DESIGN EXAMPLE 

A. Specification 

 

The main project specifications are shown at Table 1.  

 

TABLE 1 

Inverter Specifications 

E = 900V Nominal DC bus voltage 

vOUTmax = 300 Vrms Output phase to neutral voltage 

iOUTmax = 12 Arms Output current 

POUT = 1.5kVA Output power 

fS = 200kHz Switching frequency 

f = 60Hz Output frequency 

LOUT = 2.5mH Output filter inductance 

COUT = 5µF Output filter conductance 

Cp = 1nF Commutation capacitances 

B. Auxiliary Inductors Calculation 

 

The auxiliary inductors limit the di/dt during turn off of 

the main diodes, D5 and D6. The di/dt is directly related to 

the reverse recovery peak current, irr, of this diodes. 

Considering a di/dt of 40A/s, the inductors LSA and LSB 

can be obtained from the expression: 
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C. Load Impedance 

 

It’s obtained from 

    605,260260
22 mZOUT     (25) 

D. Diode Selection 

 

The selected diode is the APT15D100K fast/ soft recovery 

diode from Advanced Power Technology. The selection was 

made considering the slow recovery characteristics, desired 

for the application. The diode characteristics are show in 

Table 2. 

 

TABLE 2 

Diode Characteristics 

Vrrm = 1000V Maximum Reverse Voltage 

IAV = 15A Diode Average Current 

Qrr = 3µC Reverse Recovery Charge 

E. Switching Period 

 

 s
f

T
S

S 5
200000

11
  (26) 

F. Reverse Recovery Current 

 

The reverse recovery current is given using (19) 
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G. Clamping Voltage Capacitor Behavior 

 

Based on calculated values for LSA, irr, TS and E, the 

behavior of CSA capacitor voltage can be determined using 

(18), for a load from 10% to 100%.This behavior is shown in 

Fig. 5. 
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Fig. 5.  Capacitor clamping voltage behavior. 

H. Behavior of the Current if 

 

The if current behavior, which is obtained from (22) is 

shown at Fig. 6. 

According to it, the minimal if value occurs at π/2, for 

60Ω load. To guarantee the ZVS condition in all load range, 

the minimum if  value, which is obtained from (22), should 

be higher than the minimum required if, obtained from (10), 

thus: 
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VI. EXPERIMENTAL RESULTS 

A 1.5kW NPC ZVS PWM inverter prototype was 

developed to validate the proposed circuit. The simplified 

block diagram of this prototype is shown at Fig. 7. The main 

specifications and components are listed at Table 3. 
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Fig. 6.  if  current behavior.  

 

 

320VAC

 

Rectifier

Doubler

 +E/2

-E/2

N
NPC ZVS

 

Output

FilterN

vOUT

N

N

L

 
Voltage 

Sensor
MOSFET

Drivers

 
Signal Conditioning 

+ A/D Converter 

Auxiliary 

Power

Supply

 

FPGA

PWM modulator

vSaw

Voltage 

Controller

+
-

Protections

Reference 

Generator

Switching 

ControllerV. Sampling

 
Fig. 7.  NPC ZVS PWM Prototype. 

TABLE 3 

Prototype Specifications 

Q1 – Q4, QA, QB (STW42N65) Manufactured by ST 

D5, D6 

(APT15D100K)  Manufactured by Advanced 

Power Technology 

C1 – C6, CA, CB (Component’s intrinsic capacitance) 

CS1, CS2 (12 x 470µF/400V; electrolytic capacitor) 

LSA, LSB (11.25µH, EE30/15/7 core) 

LOUT (2.5mH; Output Inductor) 

ROUT (60Ω; Output Resistor) 

A. Experimental Waveforms 

 

The main waveforms obtained from the laboratory 

prototype are show in the next figures. Figs. 8 to 11 show the 

voltage and current at QA, Q1, Q2, and D5. It’s observed that 

for all switches, including the auxiliary switch QA the ZVS 

condition occurs, according to theoretical analysis. The 

current at LSA auxiliary inductor can be observed at Fig. 12. 

The output voltage and current, when operating in open loop, 

are shown in Fig. 13. The Fig. 14 shows the NPC efficiency 

for 220V and 127V output for the soft commutation 

technique (ZVS) and also the efficiency for the same 

topology, using the same switches, but without the auxiliary 

circuits (hard switching). 
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Fig. 8.  Voltage and current in QA, including DA and CA. (100V/div, 

2A/div, 400ns/div). 
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Fig. 9.  Voltage and current in Q1, including D1 and C1. (100V/div, 

2A/div, 400ns/div). 
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Fig. 10.  Voltage and current in Q2, including D2 and C2.(100V/div, 

2A/div, 400ns/div). 
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Fig. 11.  Voltage and current in D5, including C5.(100V/div, 2A/div, 

400ns/div). 
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Fig. 12.  Current in LSA,.(2A/div, 1µs/div). 
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Fig. 13.  Output voltage and current .(200V/div, 5A/div, 4ms/div). 

 
Fig. 14.  Inverter efficiency for soft (ZVS) and hard commutation 

for  220V and 127V output. 

VII. CONCLUSION 

A PWM NPC inverter with active clamping using the 

reverse recovery energy of the freewheeling diodes to obtain 

ZVS commutation was developed. The main operation 

stages, the main waveforms and the experimental results 

were presented. The commutation losses were reduced due to 

the use of the simple snubber using only two switches, with 

simple control strategy, to assure soft commutation for all the 

switches in the circuitry. 

The voltages across the switches were properly balanced 

under all load conditions, and the maximum currents 

observed were not significantly increased because of the 

auxiliary capacitors voltage, since this voltage is much lower 

compared to the DC-Link voltage. 

The ripple observed at the output was very low because of 

the high commutation frequency, and because of the three-

level topology, even for small output capacitors and 

magnetic. The pass-band frequency was also very high. 

The overall efficiency, when compared to non ZVS NPC 

inverter, is higher for all output loads and voltage. 

Possible applications for this circuit includes: wind 

generation inverters, Uninterrupted Power Supply (UPS), 

frequency converters, motor drive systems. 
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