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Abstract – This paper presents a Digital Variable 
Structure Controlled Three Phase Boost Inverter. The 
main usage of this converter is to provide the necessary 
AC voltage to a three-phase induction motor from 
batteries. The variable structure control, which is a 
hysteresis based control methodology, was implemented 
using a TMF320F2812 Digital Signal Controller (DSC).  

The theoretical analysis, basic equations and the 
design methodology is presented in this work. The 
converter’s main advantages are only one stage to boost 
and invert the battery energy and small number of 
components. 

  
Keywords – DC-AC Converter, Three-Phase Boost 

Inverter, Variable Structure Control. 

I. INTRODUCTION 

In the industry, the direct current (DC) machines have 
largely lost their popularity in the last years to the alternate 
current (AC) ones.  There are clear preferences for induction 
machines due to low maintenance, durability and reduced 
costs.   

However, in certain applications, it is not so easy to 
replace DC machines, like Automatically Guided Vehicles 
(AGV) and electrical fork lift trucks, used in great part of the 
industrial environment. 

 Currently, one of the AGV’s problems is the low 
autonomy of its batteries and the usage of specials machines 
and converters, which usually have high costs and are 
difficult to be found. 

The topology presented in this paper is an alternative for 
these vehicles, it is worth noting this topology invert and 
boost the energy using a single stage, allowing the usage of 
commons AC machines. In Figure 1 is shown the classic 
topology and Figure 2 the alternative topology for the 
AGV’s.  

To solve the problem about AGV’s autonomy, many 
technical works had been developed. One of those works was 
a regenerative step-up/step-down DC-DC ZVS PWM 
converter with active clamping [1]. This converter has the 
advantage to boost the input voltage to a high output voltage, 
but it is a DC-DC converter, what mean it is necessary a DC 
machine or another stage to invert the output voltage. 
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Fig. 1.  Classic Power Topology of the AGV 
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Fig. 2.  Alternative Topology of the AGV 

 
The converter presented in this paper has just one stage to 

boost and invert the output voltage. Many control techniques 
have been proposed and analyzed to the boost inverter. 
Among them, there is one based on techniques derived from 
variable structure system (VSS) theory, like Sliding Mode 
(SM) control [2-4]. 

In [5] it is presented a general purpose sliding mode 
control for DC-DC converter application. In this paper, it 
was introduced a tutorial on how to calculate the sliding 
mode parameters and presented examples for Cuk and Sepic 
converters. 

The sliding mode controller for the Boost Inverter is 
presented in [6-8]. Those implementations had good results 
but there are some differences between that technique and 
the one implemented in this article. The main difference is 
the control previously were analog and implemented in a 
single phase boost inverter and this one is digitally controlled 
using the DSC (Digital Signal Controller) TMS320F2812 
from Texas Instruments implemented in a three-phase boost 
inverter. 

II. PRESENTATION OF THE CIRCUIT 

The three-phase boost inverter consists of three current 
reversible power converters associated. The power converter 
used in this work has the same switches number as a regular 
inverter, with the addition of the input inductors that are 
necessary to step-up the input voltage. 

The power topology is presented in Figure 3 and the 
output phase voltages and line voltages waveforms of this 
converter can be observed in Figure 4. 

The output voltage is the same in the three phases but with 
120o delay between them. The signal is composed of a DC 
signal plus a sinusoidal waveform, as it is presented in (1). 
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Fig. 3.  Three - Phase Boost Inverter 
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Fig. 4.  Three-Phase Boost Inverter's Main Waveforms 

 
  
The initial specifications of this project and the main 

results can be observed in TABLE I and TABLE II 
respectively. It is worth noting to design the components, the 
converter was considered to be operating using the PWM 
(Pulse Width Modulation) technique. 

 
TABLE I – Initial Specifications 

Vin = 48Vdc Input Nominal Voltage 

VU,V,W = 127V Phase Voltage 

VUV,VW,WU =220V Line Voltage 

Pout = 3cv (2208W) Output Nominal Power 

∆Ii = 20% Input Current Ripple 

∆Vo = 5% Output Voltage Ripple 

Fs=20kHz  to 50kHz Switching Frequency 

 
 

TABLE II – Main Results 
Lin = 130µH Input Inductor 

Cout =20µF Output Capacitor 

Iin_max = 83A Maximum Input Current 

Iin_min = -30A Minimum Input Current 

 

III. CONTROL 

The variable structure control has been presented as a 
good alternative to control switching power converters [9-
10]. Some advantages over classic controllers are the 
stability on supply and load variations, robustness, good 
dynamic response and simple implementation.  

The posterior analysis and control block diagram are 
designed for a single phase, due to the three phases are 
symmetrical.  Figure 5 shows the control block diagram. In 
this figure it is worth noting there is no electrical current 
reference because this variable is not directly controlled. The 
current error is obtained using a high-pass filter. 

The control methodology uses a hysteresis based on the 
error variables, where the voltage error is not enough to 
control the power converter, so the input current ripple helps 
the control to impose the correct switch during the converter 
operation. It is important to observe that just the input current 
is used on the control and its rms value will depend on the 
load applied to the system.  
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Fig. 5.  Control Block Diagram 

A. Control Design Methodology 
 

The first stage to design the variable structure control is to 
find the boost state-space model. The load of the converter is 
considered linear. In the first stage, Q1 is open and Q2 is 
closed and in the second stage, Q2 is open and Q1 is closed. 
The state-space modeling of the equivalent circuit with state 
variables iL (input inductor current) and vC (output capacitor 
voltage) is given by (2). 

 
1 1 0

1 0

c L

C
in

LL C

dV i
Vdt CRC C

Vidi V
Ldt L L

γ

−−⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎡ ⎤ ⎢ ⎥= ⋅ + ⋅ +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 (2) 

 
Where:  
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VC = VU = VV = VW = Output Voltage 
IL = IU = IV = IW = Input Current 
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C = CU = CV = CW = Output Capacitor 
L = LU = LV = LW = Input Inductor 
R = Load 
 
It is important to note the equations above can be 

represented by (3). 
 

 
dx A x B C
dt

γ= ⋅ + ⋅ +  (3) 

 
The switching surface equation in the state space is 

expressed by a linear combination of the space-state variable 
errors and it can be observed in (4). 

 
 ( , )L v V i ivC i s sσ ε ε= ⋅ + ⋅  (4)  
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Replacing (5) in (3), the equation can be redefined by (6). 
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To find the switching surface gains, it is necessary to plot 

both of structures and find the best rate between si and sv.The 
status of the switching is related to the value of σ(x). 
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In Figure 6 it is possible to observe the structure 1 (γ=1) 
space-state plane. Figure 7 presents the space-state plane to 
structure 2 (γ=0). 
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Fig. 6.  Structure 1 
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Fig. 7.  Structure 2 

 
It is important to note that the structure 1 just can work 

when vC > Vin, so εv > - (vCref – Vin). 
The combined state-space plane is presented in Figure 8. 
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Fig. 8.  Combined space-state planes 

The switching surface rate was chosen to provide the best 
performance of the control. Two auxiliary operation points 
were necessary to find the switching function: the initial and 
final one. 

So, the rate between si and sv is 0,12. Considering si=0,1: 
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B. Switching Frequency 
 

The state trajectories are directed toward the switching 
surface and move to another structure in the same moment, 
only if the switching frequency is infinite. It is not possible in 
practical systems, so a typical control circuit features a 
hysteresis comparator with width 2δ is implemented as it can 
be observed in Figure 9. 
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Fig. 9.  S(x) Behavior 

 
The switching frequency is shown in (9), where ∆t1 is the 

conduction time of the switch Q1 and ∆t2 is the conduction 
time of the switch Q2. 
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The times quantities for ∆t1 and ∆t2 can be found using 

(10). 
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Using (10) it is possible to find an equation to represent 

∆t1 and ∆t2. 
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The maximum switching frequency is obtained when the 

converter is operating without load (iLref = 0 and R= ∞) and it 
can be obtained replacing (11) and (12) in (9). 
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C. Flowchart 
 

A flowchart was designed to help and make easier the 
source code creation. 

The main code is just to configure all the peripherals, 
clocks and create the variables used in the control. The 
software has an ADC interrupt after each ADC conversion. 
In the interrupt routine, the sliding mode control is 
implemented and the switches pulses are created. If an error 
signal from the drivers reaches the DSC, the external 
interrupt occurs and all the switches are opened. Figure 10 
shows the main flowchart. The external and ADC interrupts 
flowcharts can be observed in Figure 11 and Figure 12.   
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Fig. 10.  Main Flowchart 
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Fig. 11.  External Interrupt Flowchart 

 
 

ADC Interrupt

Begin

Read ADC inputs

Iin>High
Limit

Current

Open the main
Switch

Return

Yes

No

Current <
Low Limit
Current ?

Close main
switches

Return

No

Yes

Open main
switches

Return

Iin - High Pass
Filter

Voltage Error
(V-Vref)

Ei*Ki

Ev*Kv

 s=Ev*Kv+Ei*Ki

surface>
hysteresis

Open main
switches

Return

Yes

 surface>
-hysteresi

s

Yes

No Return
No

Fig. 12.  ADC Interrupt 

158 Eletrônica de Potência, vol. 13, no. 3, Agosto de 2008



IV. EXPERIMENTAL RESULTS 

A. Simulation Results 
 

In order to validate the theoretical analysis, the variable 
structure controlled three-phase boost inverter was simulated 
using the package Simulink from the software Matlab. Figure 
13 shows the output voltages using 3.33µs sample period. 
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Fig. 13.  Output Voltages 

 
In Figure 14 is shown the input current in one of the 

phases. The current in other phases is similar, just with a 
120o delay.  
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Fig. 14.  Input Current 

B. Prototype 
 

After to design the control and validate its efficiency by 
simulations, a prototype was build to acquire experimental 
results. 

The control was digitally implemented using a DSC and 
some signal conditioning was necessary to assure good 
accuracy in the analogical to digital conversion. 

Figure 15 shows the main blocks of the system, as DSC, 
power converter, anti-aliasing filters, signal conditioners and 
so one. 

The voltage sensors used in this prototype were resistive 
dividers. They were chosen due to their costs and no 
isolation requirements. Due to the reference used in the 
control and the structure itself, the sensors used to measure 
the input currents were isolated Hall-Effect sensors. 

The anti-aliasing filters avoid the spectrum superposition 
on sampled systems. The cut-off frequency of the anti-
aliasing filter of the voltage feedback signal is approximately 
120Hz and the current feedback signal is approximately 
150kHz.  
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Fig. 15.  Converter Block Diagram 

 
The developed software was created to calculate the 

variables involved in the control technique at 300kHz using 
the Analog to Digital Interruption. The current sample is 
filtered using an IIR (Infinite Impulse Response) digital filter 
to keep just the electrical current ripple. The voltage sample 
is compared with the current voltage reference vector 
position and reserved to the later calculations. The voltage 
reference vector was created using 380 positions and by this 
reason, its index is incremented each 13 interruptions. 

Using the voltage error and the filtered current, the 
switching surface gains are applied as presented in Figure 5, 
and sent to the hysteresis comparator. Using the output 
hysteresis comparator, the states switches are updated. 

Some special features were created to allow the corrected 
operation of the system. A soft-start procedure was 
implemented to boost the output voltage for 3 intermediate 
levels using a ladder profile before applying the nominal 
voltages references in order to eliminate electrical current 
peaks. An electrical current limitation is applied each cycle, 
avoiding current peaks higher than maximum under nominal 
operation. During the software development, special routines 
were implemented to allow the developer to stop the 
processor being sure the main switches were opened and will 
not cause any damage to the system. 

The whole encoding was done using C language and the 
libraries available in the processor’s manufacturer website. In 
order to be sure the compiler were not using too much 
assembly for each C language encoded line, the generated 
assembly code was verified for the whole control technique 
related code.  
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C. Experimental Results 
  Experimental results were obtained using the prototype 

specified in Table I. The results presented in this section 
were obtained using a full load.  

Figure 16 shows the three output voltage and Figure 17 
shows the line voltages. In this condition, the THD of vUV, 
vVW and vWU was 5.4%, 5.4% and 4.9% respectively. In 
Figure 18 it is possible to observe the motor current. 

Other important waveform that should be observed is the 
inductor current that is presented in Figure 19. 

To assure the control technique, two different frequencies 
in voltage reference signal were applied. The Figure 20 and 
Figure 21 present the output voltage with different 
frequencies. 

vU vV vW

 
Fig. 16.  Output Voltage (100V/div, 5ms) 

vUV vVW vWU

 
Fig. 17.  Line Voltages (100V/div, 5ms) 
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Fig. 18.  Motor Current (2A/div, 10ms) 

 
Fig. 19.  Inductor Current (10A/div, 2.5ms) 
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Fig. 20.  Line Voltages – 45Hz (100V, 5ms) 
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Fig. 21.  Line Voltages – 75Hz (100V, 2.5ms) 

 
Fig. 22.  Soft Start of the Motor (100V/div, 250ms) 
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It is important to note that in the start of the motors, the 
current is very high. So, to minimize that, the algorithm was 
developed to purpose a soft start to the motor where two 
different DC levels are applied to the converter output and 
after that the AC signal starts with small amplitude and it 
should getting high until the nominal amplitude. The soft 
start voltage of the motor is presented in Figure 22. 

V. CONCLUSION 

This paper presented a Digital Variable Structure 
Controlled Three-Phase Boost Inverter and its theoretical 
analysis with the main equations of its control. 

In order to validate the theoretical analysis, the circuit was 
simulated and implemented as a 2.2kW prototype. The 
experimental output voltages, input currents and switching 
behavior waveforms closely matched the theoretical ones. 
One advantage of digital variable structure control is its easy 
code creation and facility to adjust the practical gains. On the 
other hand, by the reason that this control technique is based 
on hysteresis, the processor should be very fast to be able to 
process a great number of samples and compare it with the 
hysteresis. In practical experiments the authors conclude that 
is necessary a sampling frequency at least 6 times greater that 
the maximum switching frequency to obtain a good control 
response. 

The nominal results were acquired with a 90Vdc input 
voltage. It was necessary because it is not possible to get the 
nominal power with 48Vdc, due to the non linear 
characteristic of the boost inverter, mainly for high gains. 
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