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Abstract— For Photovoltaic Arrays (PV), the Maximum Power Point Tracking (MPPT) deserves a special
attention, ensuring that the maximum power can be extracted for any giving environmental condition. In this
context, Artificial Neural Networks (ANN) are a good solution to perform the MPPT. In this paper, a comparative
between different ANN topologies can be seen, where the number of epochs for convergence, time for algorithm
execution and mean square error are analyzed through different numbers of neurons and training samples. Beyond
the ANN simulations, the parameters for the PV used were obtained using Genetic Algorithms (GA).
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Resumo— Em Painéis Fotovoltaicos (PV) o Rastreamento do Máximo Ponto de Potência (MPPT) merece
uma atenção especial, garantindo que a máxima potência possa ser extráıda para uma dada condição do ambiente.
Neste sentido, as Redes Neurais Artificiais (ANN) são uma boa opção para a realização do MPPT. Neste trabalho,
um comparativo entre diferentes topologias de ANN pode ser visto, onde o número de épocas para convergência,
tempo de execução do algoritmo e o erro médio quadrático são analisados através da utilização de diferentes
números de neurônios e de amostras de treinamento. Além das simulações da ANN, os parâmetros do PV
utilizados foram obtidos através de Algoritmos Genéticos (GA).

Palavras-chave— Painéis Fotovoltaicos, Redes Neurais Artificiais, Algoritmos Genéticos, Rastreamento do
Máximo Ponto de Potência

1 Introduction

One of the important highlights on photo-
voltaic arrays (PV) is their dependence with cli-
matic variables like solar radiation and tempera-
ture (Carrijo et al., 2010), making it highly dy-
namic, especially for their dependence with solar
radiation, that may change in a few seconds by a
cloud shading, for example. These variables have
a large impact on the output power provided by
the photovoltaic array. Once the power on photo-
voltaic arrays is dependent on these climatic vari-
ables, the controller needs to be fast enough to
find the best operating point for each instanta-
neous climatic condition, and then achieve the de-
sired power set point. The techniques used to find
the maximum operating point are defined as Max-
imum Power Point Tracking (MPPT). The Artifi-
cial Neural Networks (ANN) appears as a MPPT
method, since they can learn the behavior of
power on Maximum Power Point (MPP), through
training, and extrapolate its behavior for any giv-
ing climatic input with good accuracy. Also, other
variables, climatic or not, may be added as inputs
for ANN, and the ANN can then achieves a model
that also relates these other variables to the out-
put power, beyond solar radiation and tempera-
ture (Esram e Chapman, 2007).

A known problem of using ANN in general is
how to determine the best architecture and topol-
ogy for it, and what is the best number of sam-
ples to be used on its training. So, this paper

proposes showing the differences between some
buildings of ANN used on photovoltaic arrays,
and then, provide a way to choose a better ap-
proach for the best ANN configuration to be used
on MPPT. A better ANN configuration brings as
benefits the reduced computational efforts during
the training phase, keeping output errors small.
Also, while defining some of the PV parameters for
this paper, a numerical method was implemented
through Genetic Algorithms (GA). The parame-
ters found were used for all ANN simulations.

In Section 2, a brief discussion about the PV
modeling and the PV parameters will be shown.
Also, a quick description of the ANN will be done.
In section 3, the ANN results will be discussed
for different ANN configurations, along with the
input-output data classification for ANN training
and its validation. Finally, Section 4 has the con-
clusions about the obtained results.

2 Photovoltaic Array Parameters And
Artificial Neural Network For MPPT

For ANN training, a MATLABr based model
was used for simulating the equivalent circuit ap-
proximated by a single-diode. This is a model that
can simulate well a given PV with relative sim-
plicity, as described in (Villalva et al., 2009). The
catalog parameters provided by the PV manufac-
turer are shown in Table 1, where Vmpp, Impp and
Pmpp are the voltage, current and power at the
MPP, respectively, KTi is a constant that relates



the current supplied by PV and its temperature,
Ns is the number of connected cells in series, Voc

is the open circuit voltage at the STC (Standard
Tests Conditions), Isc is the short circuit current
at the STC and Eg is the bandgap energy from
polycrystalline silicon cells. The STC establishes
the reference for temperature at 25 oC and for so-
lar radiation of 1000W/m2, with an air mass of
1.5.

Table 1: Catalog PV Parameters.

Parameter Value Unit
Voc 21.9 V
Isc 7.65 A
Vmpp 17.7 V
Impp 7.38 A
Pmpp 130.63 W
KTi 2.601× 10−3 A/K
Ns 36 –

2.1 Equivalent PV Circuit

The photovoltaic arrays can be approximated
by an electrical circuit. The most common elec-
trical model consists of a current source, a diode,
a series resistance and a shunt resistance (Mahdi
et al., 2010), as shown in Figure 1. The current
source represents the energy provided by the solar
radiation, and it is represented in Equation 1:

Iph = (Isc + KTi(T − Tr))
S

Sr
(1)

Where:
Iph: Total current provided by solar radiation
Isc: Short circuit current provided in STC
KTi: Constant - Relates the PV current and tem-
perature
T : Instantaneous PV temperature
Tr: STC temperature
S: Instantaneous solar radiation
Sr: STC solar radiation

D Rp

Rs

I
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+

V
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Figure 1: Photovoltaic array equivalent circuit.

This circuit approximation results in Equa-
tion 2, which represents the output current of the
PV:

I = Iph − Is(e
( q
Ak

1
T (V+I.Rs)) − 1)− V − I.Rs

Rp

(2)

Where:
Is: Diode saturation current
q: Elementary charge
A: Ideality diode’s constant
k: Boltzmann’s constant
Rs: Series resistance
Rp: Shunt resistance

In Equation 2, it is clear that the output cur-
rent I depends on its own value, and also on the
output voltage value. So, the only manner to
obtain the PV parameters is through numerical
methods (Villalva et al., 2009).

The diode saturation current Is is a factor de-
pendent on the junction temperature and of a Iso
constant, which is the diode saturation current at
the reference temperature, on STC. Iso can be cal-
culated if the PV is on STC conditions and in the
Open Circuit operation, which makes the output
current null. Under these conditions, the current
provided by the photovoltaic effect is the Short
Circuit Current, and Equation 2 can be manipu-
lated resulting in Equation 3:

Iso =

Isc −
Voc

Rp

e(
q

Ak
1
Tr

Voc) − 1
(3)

Once Iso is in hands, and now imposing the
MPP at the STC conditions, Equation 2 can be
manipulated once more, now isolating the ideality
diode constant A. The ideality diode constant is
given by Equation 4:

A =
Vmpp − Voc

kTr

q
.ln
(
Isc − Impp − Vmpp

Rp

) (4)

It’s important to note that theses constants
are depending on the Rp value, and that it will
be considered as an infinite value. The section 2.2
shows how Rs and Rp values were calculated.

2.2 Genetic Algorithms for PV Parameters Ob-
tainment

Genetic Algorithms (GA) are a powerful tool
for solving optimization problems, where function
minimization is included, as seen in (Zagrouba
et al., 2010).

GA are inspired in biological behavior, such
as ANN, where a computational population is ran-
domly started and imposed to a condition defined
by the function. While the population evolves, the



individual genes approaches the best solution for
the given function (Hadji et al., 2011).

For GA used in this paper, the selection of
individuals for crossover is done by a stochastic
uniform approach. In this selection method, each
individual has a probability to be chosen based on
its value from the fitness function. So, the algo-
rithm sweeps in equal steps all the range deter-
mined by the entire population and an individual
is selected during each step. In this method, an in-
dividual can be selected more than once. Two in-
dividuals are keep automatically for the next gen-
eration by elitism. The crossover method creates
new individuals from a weighted average of the
parents. Mutation occurs in some random indi-
viduals and points to a random direction.

To achieve the Rp and Rs values, a function to
be minimized was defined using two values of re-
sistance as variables. Having the parameters given
in the PV catalog, which are also shown on Table
1, Vmpp, Impp, Pmpp and KTi, Equation 2 can be
applied to the MPP point, resulting in Equation
5, and multiplying it for the Vmpp, this results in
the power provided by the PV on the MPP.

Using the Pmpp provided by the catalog along
with Vmpp and Impp, Equation 6 emerges natu-
rally as a cost function to be minimized having
the resistance values as variables.

Impp = Isc − Iso(e(
q

Ak
1
Tr

(Vmpp+Impp.Rs)) − 1)

−Vmpp − Impp.Rs

Rp
(5)

J(Rs, Rp) = |Pmpp − Vmpp.Impp(Rs, Rp)| (6)

Where:
J : Cost function to be minimized

Before starting the iterations for minimizing
the cost function J(Rs, Rp), the Iso and A con-
stants must be defined. As they are values depen-
dent of Rp, an approximation must be done, con-
sidering the shunt resistance as infinite. This elim-
inate the Rp dependence of Iso and A, and gives
values closer enough to be used on PV model. So,
Iso and A are calculated and shown in Table 2. Us-
ing these values, the Rs and Rp are finally found
as the solution for the cost function thorugh GA.
As the solution changes every running, because
the algorithm starts with a random population,
the values presented in Table 2 were fixed for the
following steps.

The values given on Table 2 show that Iso
and A approximates very well to the real values
of the PV, once Iso has a very small value and A is
between 1 and 2, since those are the desired con-
dition for both cases. For the resistances Rs and
Rp, the values obtained through GA also reflect a

Table 2: Catalog PV Parameters.

Parameter Value Unit
Rs 4.5132× 10−5 Ω
Rp 9.3399× 107 Ω
Iso 2.0463× 10−7 A
A 1.3579 –

good PV representation, where Rs is very close to
zero and Rp can be considered big enough to be
approximated as infinite.

Now, this paper will use these parameters
from Table 2 on the next sections to represent the
PV for MPPT analysis.

2.3 Artificial Neural Networks

The ANN is a grouping of artificial neurons,
inspired in the biological neuron behavior, which
is the simplest structure of an ANN. The artificial
neuron is composed by a synaptic weights vector,
an adder, a bias and the activation function. Its
representation is seen in Figure 2. The mathemat-
ical model for the neuron is shown in Equation 7.
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Figure 2: Artificial neuron and its mathematical
model.

{
u = X ·W − b
y = g(u)

(7)

Where:
X: Neuron Input Vector
W: Neuron Weights Vector
b: Bias
u: Net Input
g: Activation Function
y: Neuron Output

For the supervised training, a pair input-
output is given, where for one input sample, its
desired output yd is known. Having them, the
training consists to begin with an initial value of
W for the input X, which results in an output
y. Comparing y with the desired output yd, the
output error is known, and the process will iterate
trying to minimize this error.

It’s important to know that the variables cho-
sen for ANN inputs can influence drastically on
ANN’s internal structure. Therefore, adding or



removing input variables will result in a totally
different structure of ANN. However, even if two
ANNs have different internal structure, not neces-
sarily they will have a different input-output be-
havior. So, a good practice is to evaluate the ANN
behavior using different sets of inputs vector, and
then analyze which of them brings a better repre-
sentation of the real solution.

If compared with other MPPT techniques,
ANN can take advantage on reducing the out-
put oscillation (Bastos et al., 2012), having fast
convergence for MPP (after training phase) and
achieving a real MPP, besides of quickly adjust-
ing the MPP even under abrupt changes on cli-
matic conditions. On the other hand, ANN has
a high computational cost during the training
phase, which makes its implementation difficult,
beyond of being dependent of the PV used (Esram
e Chapman, 2007).

2.4 Multi-Layer Perceptron

The Multi-Layer Perceptron (MLP) is an
ANN architecture that uses multiple neuron layers
between the input and the output. An example of
MLP is the one adopted in this paper, represented
in Figure 3, where there are one input layer, one
hidden layer with n neurons, and the output layer
with just one neuron. These combination of mul-
tiple neurons in multiple layers results in a larger
flexibility on dealing with complex and nonlinear
problems (Mashaly et al., 1994).

For the MLP training, the back-propagation
algorithm is a common used method. It consists
in two steps, where the first calculates the ANN
output and the second will adjust the synaptic
weights for all ANN’s neurons. In the first step,
the ANN calculates an output using the existing
weight values without changing them. This step
is called forward, and is necessary just to produce
an output to be compared with the desired out-
put, thus generating the error. In the second step,
called backward, the ANN will propagate the error
through the neurons in the opposite way, starting
from the output layer to the input layer. Then,
the weights are adjusted achieving the error min-
imization.

As this method is based on the minimization
of the error function through its derivatives, the
activation function of the neurons must be con-
tinuous and derivable. For this reason, activation
functions like the step or signal functions are not
applicable in this architecture.

3 ANN MPPT Results

Only the MLP architecture was considered
while obtaining the results. The reason for this
is that the MLP in general has a good perfor-
mance. Also, a good advantage on using ANN for
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Figure 3: Generic representation of the ANN used
in simulations.

MPPT algorithms is the reduction of the oscilla-
tion for the output signal, as described in (Bastos
et al., 2012). Variations for the ANN were im-
posed on its topology: two activation functions
were used, and the number of hidden layer neu-
rons and the quantity of samples were evaluated
to analyze the ANN performance for training. An
important observation is about how climatic sam-
ples were obtained and analyzed.

The climatic database was provided by INPE
(Instituto Nacional de Pesquisas Espaciais), with
a project known as SONDA. All data were taken
in Joinville, located in Brazil. Another important
observation is that all the simulations executed
have the same initial weights vector. Having the
equivalent model, the PV can be simulated for any
climatic condition, and its curves of current and
power versus voltage are built. Through the built
curves the values of Maximum Power Point can
be extracted, along with its voltage at this point
(Vmpp). Now, the database is complete, being
composed by the climatic variables and its MPP,
desired as output.

Once all the climatic samples and their re-
spective MPP values are available, the next step
is how to classify which input samples could be
used on ANN training phase and its validation.
Since the climatic variables changes through the
year, a good approach is to use variables taken
along the four seasons of weather.

That being said, the first classification was
done choosing samples from the first day of one
month and each season. The months chosen were
January, April, July and October, having then
the input-output pair for summer, autumn, win-
ter and spring seasons for southern hemisphere,
respectively. Another classification for ANN sam-
ples is separating them by two days per season,
one entire month of samples per season, one entire
year (2009) and two entire years (2009 and 2011).
This data classification is not the best method to
select data for ANN training, where probably a
better statistical analysis could be used in order



to achieve a better classification of the samples.
However, the intent of this work is to show that
the ANN is able to be trained even with a non-
optimized amount of input-output data, since this
data has variability enough to represent the be-
havior of the system.

To validate ANN results, the values for de-
sired output were also built by simulations in
MATLABr obtained with climatic values not
used previously, with samples from 2012 year.
Two activation functions were used: the sigmoid
function and the hyperbolic tangent function. The
number of neurons was fixed in 4, 5, 8 and 9 neu-
rons, where this values were determined after some
initial simulations, varying the number of neurons
in the hidden layer in a range of 2 to 10. The best
four results were taken to compose the final re-
sults. To better understand how the data results
were obtained, a sampling tree with collected data
is shown in Figure 4.
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Figure 4: Sampling tree for building ANN results.

To analyze the ANN methods, the data re-
sults were composed by three factors: the final
mse (mean square error) obtained on validation

phase, the number of epochs“k”taken by the ANN
to converge into a solution (the tolerance was fixed
in 10−3 for the mse on the training phase) and the
time for algorithm convergence. The results for
both functions varying the number of neurons and
the number of training samples can be observed in
Figures 5, 6, 7 and 8. Figures 5 and 6 reflect the
behavior for the number of epochs, while Figures
7 and 8 show the results for the time for executing
the algorithm.

The first observation is that the hyperbolic
tangent presents better values than the sigmoid
functions, in terms of number of epochs for con-
vergence and time for algorithm execution, inde-
pendent of the number of neurons or the number
of training samples. Another important tendency
is that in general the time for algorithm execu-
tion and the number of epochs for convergence
decreases as the number of training samples in-
creases. The behavior for the neurons quantity
also can be evaluated. As the number of neurons
increases, initially there is a reduction on time for
algorithm execution. But after, a small increment
is observed.
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Figure 5: Number of training epochs for sigmoid
function.
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Figure 6: Number of training epochs for hyper-
bolic tangent function.
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Figure 7: Time to execute the training for the
sigmoid function.
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Figure 8: Time to execute the training for the
hyperbolic tangent function.

At last, Figure 9 and Figure 10 are represent-
ing the behavior for the average mean square er-
ror (amse). The mean square error is the sum
of all square error values, for each output sam-
ple, divided by the number of samples, as shown
in Equation 8. As the values of mse don’t vary
substantially with the neuron numbers, but only
with the training samples, was chosen to take the
average of the mse for number of neurons for each
function.

mse =

n∑
s=1

(y(s) − y
(s)
d )2

n
(8)

This average of the mse for number of neurons
and each function resulted in the amse, a value
which represents the mse dependent only with the
number of samples, and almost constant for any
number of neurons. The amse clearly increases
with the number of samples used for training, for
both functions. Another interesting fact is that
the total mean of mse for each function is bigger
for hyperbolic tangent function than the sigmoid
function, but nevertheless the difference between
the amse for the two functions is sufficiently small.
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Figure 9: Average Mean Square Error for sigmoid
function.
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Figure 10: Average mean square error for hyper-
bolic tangent function.

4 Conclusions

In this work, the comparison between differ-
ent ANN topologies was shown, along the param-
eters obtainment for the PV. It could be seen that
the number of epochs on training phase decreases
when increasing the number of training samples.
The time for training algorithm is also smaller as
the number of samples increases, but after a given
value, the cost-benefit for using bigger samples
quantity decreases.

Higher number of neurons can also increases
the execution time of the algorithm. But us-
ing a small number of neurons is not recom-
mended, because the algorithm may not achieves
the convergence, or may take a longer time to con-
verge. Values of mse increases as the number of
training samples increases, and this phenomena is
known as overtraining, as described in (Balzani e
Reatti, 2005), and observed on the results. The
hyperbolic tangent function has a superior com-
putational performance, but it also has a slightly
increased error than the sigmoid function. But as
seen in results, the smaller computational efforts
compensates this very small difference on ANN



mse for PVs.

The techniques shown in this paper could be
used to recognize the PV parameters and extract
the maximum power for a given PV. It’s important
to note that, having one system to find the PV
parameters and another one to realize the MPPT,
since the PV parameters may change with time,
this system could adapt over the years, resulting
in a good advantage of this model, especially when
the system is used in remote places with difficul-
ties of maintenance.
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